Non-Sparse Multiple Kernel Fisher Discriminant Analysis

نویسندگان

  • Fei Yan
  • Josef Kittler
  • Krystian Mikolajczyk
  • Muhammad Atif Tahir
چکیده

Sparsity-inducing multiple kernel Fisher discriminant analysis (MK-FDA) has been studied in the literature. Building on recent advances in non-sparse multiple kernel learning (MKL), we propose a non-sparse version of MK-FDA, which imposes a general lp norm regularisation on the kernel weights. We formulate the associated optimisation problem as a semi-infinite program (SIP), and adapt an iterative wrapper algorithm to solve it. We then discuss, in light of latest advances in MKL optimisation techniques, several reformulations and optimisation strategies that can potentially lead to significant improvements in the efficiency and scalability of MK-FDA. We carry out extensive experiments on six datasets from various application areas, and compare closely the performance of lp MK-FDA, fixed norm MK-FDA, and several variants of SVM-based MKL (MK-SVM). Our results demonstrate that lp MK-FDA improves upon sparse MK-FDA in many practical situations. The results also show that on image categorisation problems, lp MK-FDA tends to outperform its SVM counterpart. Finally, we also discuss the connection between (MK-)FDA and (MK-)SVM, under the unified framework of regularised kernel machines.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Sparse Representation Based Complete Kernel Marginal Fisher Analysis Framework for Computational Art Painting Categorization

www.PosterPresentations.com • This paper presents a sparse representation based complete kernel marginal Fisher analysis (SCMFA) framework for categorizing fine art images. • First, we introduce several Fisher vector based features for feature extraction so as to extract and encode important discriminatory information of the painting image. • Second, we propose a complete marginal Fisher analys...

متن کامل

Matching Pursuit Kernel Fisher Discriminant Analysis

We derive a novel sparse version of Kernel Fisher Discriminant Analysis (KFDA) using an approach based on Matching Pursuit (MP). We call this algorithm Matching Pursuit Kernel Fisher Discriminant Analysis (MPKFDA). We provide generalisation error bounds analogous to those constructed for the Robust Minimax algorithm together with a sample compression bounding technique. We present experimental ...

متن کامل

lp norm multiple kernel Fisher discriminant analysis for object and image categorisation

In this paper, we generalise multiple kernel Fisher discriminant analysis (MK-FDA) such that the kernel weights can be regularised with an `p norm for any p ≥ 1, in contrast to existing MK-FDA that uses either l1 or l2 norm. We present formulations for both binary and multiclass cases and solve the associated optimisation problems efficiently with semi-infinite programming. We show on three obj...

متن کامل

Kernel second-order discriminants versus support vector machines

Support vector machines (SVMs) are the most well known nonlinear classifiers based on the Mercer kernel trick. They generally leads to very sparse solutions that ensure good generalization performance. Recently Mika et al. have proposed a new nonlinear technique based on the kernel trick and the Fisher criterion: the nonlinear kernel Fisher discriminant (KFD). Experiments show that KFD is compe...

متن کامل

Multiple Kernel Learning in Fisher Discriminant Analysis for Face Recognition

Recent applications and developments based on support vector machines (SVMs) have shown that using multiple kernels instead of a single one can enhance classifier performance. However, there are few reports on performance of the kernel‐based Fisher discriminant analysis (kernel‐based FDA) method with multiple kernels. This paper proposes a multiple kernel construction ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of Machine Learning Research

دوره 13  شماره 

صفحات  -

تاریخ انتشار 2012